با ابر، جهان را به مکانی مبتنی بر داده تبدیل کنید

کیم: آره این واقعاً شگفت‌انگیز در مورد ابر است، زیرا وقتی همه داده‌ها وجود دارد، کارهای شگفت‌انگیزی می‌توان با آن انجام داد و نوآوری دیوانه‌وار اتفاق می‌افتد. و ما اکنون شاهد این هستیم که همه چیز با OpenAI و ChatGPT و همه اینها اتفاق می افتد. و در Power BI، مجموعه‌ای از قابلیت‌های هوش مصنوعی را در این پلتفرم ارسال کرده‌ایم. و یکی از جنبه‌های مهم قابلیت‌های هوش مصنوعی که واقعاً مفید بوده است، مواردی است که کاربران تجاری می‌توانند از آن‌ها استفاده کنند. بنابراین مواردی مانند جستجوی زبان طبیعی که در آن می‌توانید سؤالی بپرسید و پاسخی را به عنوان نمودار دریافت کنید، یا یک تحلیل تأثیرگذار کلیدی که می‌توانید از سیستم بپرسید: “هی، چه چیزی بر لغو من تأثیر می‌گذارد؟ کدام معیارها بر آن تأثیر می‌گذارند؟» و حتی با آخرین ویژگی هوش مصنوعی خود، ما در واقع از GPT-3 برای تولید کد برای کاربران تجاری استفاده می کنیم تا معیارهایی را در مجموعه داده خود بنویسند. بنابراین آنها می توانند به راحتی کدی را برای محاسبه محاسبات سال به سال یا حتی محاسبات پیچیده تر فقط از طریق زبان طبیعی تولید کنند.

این واقعاً به کاربران تجاری اجازه می دهد تا به داده هایی بپردازند که قبلاً هرگز نداشته اند و فقط با داده ها کار کنند و سواد را ایجاد کنند که قبلاً هرگز نداشتند. و برخی از بزرگ‌ترین مشتریان ما، یک شرکت خرده‌فروشی وجود دارد که با آن کار می‌کنیم و 40 درصد از کاربران آن به طور منظم از این ویژگی‌ها استفاده می‌کنند. بنابراین شما افرادی دارید که قبلاً گزارشی را باز می کردند، شماره می گرفتند و ادامه می دادند. حالا آنها می توانند خیلی بیشتر با آن کار کنند و خودشان می توانند این سؤالات را بپرسند. البته هر دو باعث کارآمدتر شدن تجارت می شود، زیرا آنها به دانشمندان داده نیاز ندارند که این کار را انجام دهند. یک کاربر تجاری می‌تواند به تنهایی این کار را انجام دهد، اما، این کار باعث می‌شود تا کاربران تجاری و کل خط کسب‌وکار، مجموعه‌ای از امکانات را که قبلاً هرگز نداشته‌اند، باز کند.

پست های جدید  ترکیبات مهم در کرم ضد لک عالی کدامند؟

لورل: و این یک نکته واقعا عالی است. آنیل، لزوماً لازم نیست دانشمندان داده داشته باشید تا به این نوع بینش هایی که از داده ها به دست آورده اید کمک کنند. بنابراین شما به تعدادی از عملیات پشتیبان مانند مالیات و ERP یا برنامه ریزی منابع سازمانی اشاره کردید. پس چگونه می‌بینید که مردم برای تصمیم‌گیری قدرت پیدا می‌کنند و در واقع نه تنها زمان کمتری را شاید در اعماق صفحات گسترده صرف می‌کنند، بلکه سپس نوآوری می‌کنند و شیوه ارائه کالاها و خدمات را تغییر می‌دهند؟

آنیل: کاملا. این یک سوال عالی است. و نظر کیم در مورد OpenAI و ChatGPT که تفکر و قابلیت‌های متفاوت زیادی را به ارمغان می‌آورد و نقش خود کاربران تجاری در مقابل دانشمندان داده را به عنوان بخشی از آن تغییر می‌دهد. اینکه چگونه به برخی از تیم‌های عملکردی نگاه می‌کنیم که این فناوری‌ها را اتخاذ می‌کنند، یک رویکرد چندگانه است، درست است؟ اول، ما شاهد همکاری نزدیک با ارائه دهندگان خدمات ابری مانند مایکروسافت هستیم که در آن نوآوری و قابلیت های هوش مصنوعی، یادگیری ماشین، به عنوان مثال، متن کاوی وجود دارد. و چیزهای ساده ای مانند متن کاوی قبلاً یک آزمایش علم داده بود، ما با یک فرضیه به خصوص در خدمات بهداشتی می آمدیم. اگر کسی بخواهد یک جریان متنی بگیرد و بفهمد “هی، بیماری چیست؟ نسخه چیست و تشخیص چیست؟” همه اینها قبلاً یک مدل یادگیری ماشینی بود که قبلاً آن را انجام می داد.

اما مایکروسافت دارای قابلیت‌های هوش مصنوعی باز یا کاربردی است، شما فقط می‌توانید آن جریان متن را ارسال کنید و به طور خودکار خروجی‌هایی را در قالب «هی، بیماری چیست؟» به شما می‌دهد. دسته بندی بیماری در مقابل علائم در مقابل دارو در مقابل پزشک، کلاس خارج از جعبه آن را برای شما طبقه بندی می کند. این یک نوآوری ساده است، من حتی در مورد OpenAI یا هر چیز دیگری صحبت نمی کنم. اگر می‌خواهید از برخی از این قابلیت‌ها استفاده کنید، باید با ارائه‌دهندگان hyperscaler مانند Microsoft Azure که سرمایه‌گذاری‌های زیادی را برای نوآوری و ارائه این قابلیت‌ها انجام می‌دهند، ارتباط نزدیک داشته باشید. و تعداد زیادی از این انجمن های فنی وجود دارد. می تواند یک CDO باشد [chief data officer] انجمن، یک انجمن نوآوری فناوری است، بحث های گروه های متمرکز است که قابلیت های نوآورانه ای را ایجاد می کند که می تواند روی هر hyperscaler اجرا شود. این مکان دیگری است که باید با آن ارتباط برقرار کنیم. و یک چیز دیگر که می‌توانم بگویم این است که از نظر تاکتیکی، وقتی معماری طراحی شده را به مشتریان توصیه می‌کنیم، توصیه می‌کنیم یک معماری بسیار ماژولار انجام دهید تا تغییر قابلیت آسان‌تر شود. به عنوان مثال، تعویض موتورهای OCR یا موتورهای ترجمه زبان یا چند نمونه که در آن چیزها به طور مداوم در حال بلوغ هستند.

پست های جدید  چگونه Sephora با سازندگان برای تأثیرگذاری بر نام تجاری شریک است

اگر معماری خود را به گونه ای بسازید که بسیار ماژولار باشد، آن سوئیچ نیز بسیار آسان خواهد بود. و در نهایت همه اینها به یک تیم بسیار متنوع خلاصه می شود که این قابلیت ها را ارائه می دهند. تشویق به آموزش، آموزش پیشرفته، و داشتن آن ترکیب مهارتی متنوع از کسب و کار فناوری مانند آنچه شما در مورد آن صحبت کردید و مخلوط کردن آن، بدیهی است که تفکر جدیدی را برای خود تیم به ارمغان می آورد و در نتیجه ما قادر خواهیم بود برخی از این نوآوری ها و قابلیت های موجود را به کار گیریم. از خود بازار خارج شود بنابراین من اینگونه به این موضوع نگاه می کنم که بر برخی از تغییرات بزرگ ERP یا دفتر پشتیبان مانند عملیات یا حتی مالیات تأثیر می گذارد. قطعا می توانیم از برخی از این قابلیت ها در آنجا استفاده کنیم. مثلا مالیات. برای مالیات، یک جریان کلان داده وجود دارد که از داده‌های بدون ساختار می‌آید، اسناد پی‌دی‌اف، قطعات فرمت‌نشده اسنادی که ما دریافت می‌کنیم، چگونه آن را درک می‌کنید؟ قابلیت‌های بزرگی از هوش مصنوعی وجود دارد که می‌توانید آن‌ها را به آن وصل کنید که می‌تواند داده‌ها را به قالبی ساختاریافته بیاورد که تنظیم‌کننده‌ها نیز به آن باور دارند. بنابراین تأثیر کمی از آن دارد.

لورل: این مثال خوبی از آنچه در پشت آفیس با تعداد زیادی عملیات در حال حاضر امکان پذیر است به دست می دهد که ابر مقیاس کننده های پلت فرم ابری مانند Microsoft Azure تعدادی از این قابلیت ها را ارائه می دهند. چگونه شرکت‌ها فرصت‌های تعاملی بین پلتفرم ابری و جدیدترین فناوری‌های نوظهور را ایجاد می‌کنند و همچنین واقعاً بر روی حاکمیت داده‌ها متمرکز می‌مانند، به‌ویژه برای آن دسته از صنایع بسیار تنظیم‌شده مانند مالی و مراقبت‌های بهداشتی؟

پست های جدید  بیایید درباره پادکست برند صحبت کنیم: استفاده از روابط عمومی برای برندها

آنیل: ببینید، اکثر شرکت‌ها دارای یک حاکمیت داده خوب هستند که در آن تعاریف مورد توافق قرار گرفته است، و این در حوزه مقرراتی است که آن صنعت قبلاً از آن پشتیبانی می‌کند. مثلاً اگر به صنعت وام مسکن نگاه کنید، یک نفر می آید و از شما وام می خواهد، عناصر خاصی از آن مشتری وجود دارد، می توانید به سایر بخش های سازمان افشا کنید، عناصر خاصی را نمی توانید افشا کنید. به طوری که از منظر داده، حاکمیت به خوبی تنظیم شده است. وقتی صحبت از خدمات کاربردی هوش مصنوعی به میان می آید، Microsoft Azure و سایر پلتفرم ها قبلاً برخی از جنبه های اخلاقی هوش مصنوعی را در نظر گرفته اند. از منظر پیش بینی با تجزیه و تحلیل چه کنیم؟ چه چیزی را نمی توانیم؟ بنابراین ما از این نقطه نظر تحت پوشش هستیم.